Unpaired Image Captioning by Language Pivoting
نویسندگان
چکیده
Image captioning is a multimodal task involving computer vision and natural language processing, where the goal is to learn a mapping from the image to its natural language description. In general, the mapping function is learned from a training set of image-caption pairs. However, for some language, large scale image-caption paired corpus might not be available. We present an approach to this unpaired image captioning problem by language pivoting. Our method can effectively capture the characteristics of an image captioner from the pivot language (Chinese) and align it to the target language (English) using another pivot-target (Chinese-English) parallel corpus. We evaluate our method on two image-to-English benchmark datasets: MSCOCO and Flickr30K. Quantitative comparisons against several baseline approaches demonstrate the effectiveness of our method.
منابع مشابه
Supplemental Material Deep Compositional Captioning: Describing Novel Object Categories without Paired Training Data
We present further empirical and qualitative results for both image and video description. For the image description task, we explore averaging weight vectors before transfer, illustrate errors made by the model when no unpaired text data is used during training and provide descriptions generated by DCC for a large variety of novel object categories in ImageNet. For the video description task, ...
متن کاملRecurrent Highway Networks with Language CNN for Image Captioning
Language models based on recurrent neural networks have dominated recent image caption generation tasks. In this paper, we introduce a language CNN model which is suitable for statistical language modeling tasks and shows competitive performance in image captioning. In contrast to previous models which predict next word based on one previous word and hidden state, our language CNN is fed with a...
متن کاملRe-evaluating Automatic Metrics for Image Captioning
The task of generating natural language descriptions from images has received a lot of attention in recent years. Consequently, it is becoming increasingly important to evaluate such image captioning approaches in an automatic manner. In this paper, we provide an in-depth evaluation of the existing image captioning metrics through a series of carefully designed experiments. Moreover, we explore...
متن کاملSocial Image Captioning: Exploring Visual Attention and User Attention
Image captioning with a natural language has been an emerging trend. However, the social image, associated with a set of user-contributed tags, has been rarely investigated for a similar task. The user-contributed tags, which could reflect the user attention, have been neglected in conventional image captioning. Most existing image captioning models cannot be applied directly to social image ca...
متن کاملNeural Baby Talk
We introduce a novel framework for image captioning that can produce natural language explicitly grounded in entities that object detectors find in the image. Our approach reconciles classical slot filling approaches (that are generally better grounded in images) with modern neural captioning approaches (that are generally more natural sounding and accurate). Our approach first generates a sent...
متن کامل